Preparation and ion exchange protocol for separating Pb and Cu from Au-Ag matrices according to Bendall 2003

The protocol is adapted from Bendall 2003 and is applicable to samples with an Au- and/or Agdominated matrix. It provides step-by-step instructions for the full procedure from weighing in the sample to the preparation of a pure Pb solution ready for mass spectrometry.

Abbreviations:

- MQ water: Ultrapure water („Milli-Q" water)
- *** = triple-distilled

References

Bendall C (2003) The Application of Trace Element and Isotopic Analyses to the Study of Celtic Gold Coins and their Metal Sources. PhD thesis, Goethe-Universität Frankfurt.

Date:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Step	Sample name							

Weighing and digestion

1	Weigh sample into empty and bleached 10 ml Savillex beaker								
2	Dissolve sample in 2 ml aqua regia $\left(1.5 \mathrm{ml} 6 \mathrm{~N} \mathrm{HCl**}\right.$ and $\left.0.5 \mathrm{ml} 7 \mathrm{~N} \mathrm{HNO}_{3}{ }^{* * *}\right)$								
3	Ultrasonic bath for 60 min								
4	Heat at $80^{\circ} \mathrm{C}$ for 120 min on a hotplate								
5	Ultrasonic bath for 60 min								
6	Evaporate sample solution at $80^{\circ} \mathrm{C}$ on a hotplate								

7	Add 1 ml 6M HCl*** to dried sample from step 6, dissolve								
8	Centrifuge								
9	Decant liquid								
10	Add 1 ml 6M HCI***								
11	Centrifuge								
12	Decant liquid (containing Pb-Cu-Au)								
13	Evaporate combined liquid from steps 9 and 12 at $80^{\circ} \mathrm{C}$ on a hotplate								

Cleaning the columns, load resin + clean

14	Fill columns with 1N HBr								
15	Fill column with resin: add resin/MQ water mixture to the column								
16	Clean resin in columns: 6N HCl***								
17	Wash resin in columns: MQ H2O								
18	Clean resin in columns: 6N HCl***								
19	Wash resin in columns: MQ H2O								
20	Clean resin in columns: 6N HCl***								
21	Wash resin in columns: MQ H2O								

$1^{\text {st }}$ chromatographic column separation with DOWEX 1x8: Removing Au

22	Condition columns with 0.5 ml 6N HCl***								
23	Change beaker								
24	Dissolve dried Pb-Cu-Au solution from step 13 in $2 \times 0.5 \mathrm{ml} 6 \mathrm{~N} \mathrm{HCl}{ }^{* * *}$								
25	Load solution								
26	Elute $4 \times$ with $0.5 \mathrm{ml} 6 \mathrm{~N} \mathrm{HCl}{ }^{* * *}$								
27	Evaporate liquid from steps $25+26$ at $80^{\circ} \mathrm{C}$ on a hotplate								

$2^{\text {nd }}$ chromatographic column separation with DOWEX 1x8: Removing Cu

28	Dissolve dried $\mathrm{Pb}-\mathrm{Cu}$ solution from step 27 in $1 \mathrm{ml} 0.6 \mathrm{~N} \mathrm{HBr}{ }^{* * *}$								
29	Condition column with $0.5 \mathrm{ml} 0.6 \mathrm{~N} \mathrm{HBr}{ }^{* * *}$								
30	Change beaker								
31	Load the $\mathrm{Pb}-\mathrm{Cu}$ solution in $2 \times 0.5 \mathrm{ml} 0.6 \mathrm{~N} \mathrm{HBr} * * *$								
32	Elute copper with $3 \times 0.5 \mathrm{ml} 0.6 \mathrm{~N} \mathrm{HBr} * * *$								
33	Change beaker								
34	Elute lead with $4 \times 0.5 \mathrm{ml} 6 \mathrm{~N} \mathrm{HCI***} \mathrm{(Pb} \mathrm{seperate)}$								
35	Evaporate separately Pb and Cu solutions from steps 32 and 34 at $80^{\circ} \mathrm{C}$ on a hotplate.								

