References
Albarede F, Blichert-Toft J, Gentelli L, et al (2020) A miner’s perspective on Pb isotope provenances in the
Western and Central Mediterranean. Journal of
Archaeological Science 121:105194. https://doi.org/10.1016/j.jas.2020.105194
Albarède F, Desaulty A-M, Blichert-Toft J (2012) A
geological perspective on the use of Pb isotopes in Archaeometry.
Archaeometry 54:853–867. https://doi.org/10.1111/j.1475-4754.2011.00653.x
Albarède F, Juteau M (1984) Unscrambling the lead
model ages. Geochimica et Cosmochimica Acta
48:207–212. https://doi.org/10.1016/0016-7037(84)90364-8
Baxter MJ, Beardah CC, Wright RVS (1997) Some
Archaeological Applications of Kernel Density Estimates.
Journal of Archaeological Science 24:347–354. https://doi.org/10.1006/jasc.1996.0119
Baxter MJ, Gale NH (1998) Testing for multivariate
normality via univariate tests: A case study using lead isotope ratio
data. Journal of Applied Statistics 25:671–683. https://doi.org/10.1080/02664769822891
Beardah CC, Baxter MJ (1999) Three-Dimensional
Data Display Using Kernel Density Estimates. In: Barceló JA,
Briz I, Vila A (eds) New Techniques for Old Times.
CAA98. Computer Applications and Quantitative Methods in
Archaeology. Archaeopress, Oxford, pp 163–170
Bendall Ch (2003) The Application of Trace Element and Isotopic Analyses to
the Study of Celtic Gold Coins and their Metal Sources. PhD
thesis, Goethe-Universität Frankfurt;
Fachbereich Geowissenschaften
Brill RH, Wampler JM (1967) Isotope Studies of
Ancient Lead. American Journal of Archaeology
71:63–77. https://doi.org/10.2307/501589
Cannon RS, Pierce AP, Antweiler JC, Buck KL (1961) The data of lead isotope geology related to problems of
ore genesis. Economic Geology 56:1–38. https://doi.org/10.2113/gsecongeo.56.1.1
Collerson KD, Kamber BS, Schoenberg R (2002) Applications of accurate, high-precision Pb isotope ratio
measurement by multi-collector ICP-MS. Chemical
Geology 188:65–83. https://doi.org/10.1016/S0009-2541(02)00059-1
Ellam RM (2010) The graphical presentation of lead
isotope data for environmental source apportionment. The
Science of the total environment 408:3490–3492. https://doi.org/10.1016/j.scitotenv.2010.03.037
Grögler N, Geiss J, Grünenfelder M, Houtermans FG (1966) Isotopenuntersuchungen zur Bestimmung der Herkunft römischer Bleirohre und Bleibarren.
Zeitschrift für Naturforschung A 21:1167–1172.
https://doi.org/10.1515/zna-1966-0744
Hsu Y-K, Rawson J, Pollard AM, et al (2018) Application of Kernel Density Estimates to Lead Isotope
Compositions of Bronzes from Ningxia, North-West China: Application of
KDEs to Lead Isotope Compositions. Archaeometry
60:128–143. https://doi.org/10.1111/arcm.12347
Hsu Y-K, Sabatini BJ (2019) A geochemical
characterization of lead ores in China: An isotope database for
provenancing archaeological materials. PLoS ONE
14:e0215973. https://doi.org/10.1371/journal.pone.0215973
Jansen M (2019) Geochemie und Archäometallurgie des Goldes der Bronzezeit in
Vorderasien [Geochemistry and archaeometallurgy of Bronze Age gold in
Middle Asia], in German. PhD thesis,
Ruhr-Universität Bochum; Fakultät
für Geowissenschaften
Ma Q, Pollard AM, Yu Y, et al (2022) Laser ablation
inductively coupled plasma mass spectrometry analysis of potash and
m-Na-Al glasses in China- using Kernel methods for trace element
analysis. Heritage Science 10:253. https://doi.org/10.1186/s40494-022-00651-3
Milot J, Malod-Dognin C, Blichert-Toft J, et al (2021) Sampling and combined Pb and Ag isotopic analysis of
ancient silver coins and ores. Chemical Geology
564:120028. https://doi.org/10.1016/j.chemgeo.2020.120028
Rehkämper M, Mezger K (2000) Investigation of
matrix effects for Pb isotope ratio measurements by multiple collector
ICP-MS: Verification and application of optimized analytical
protocols. Journal of Analytical Atomic Spectrometry
15:1451–1460. https://doi.org/10.1039/B005262K
Scaife B, Budd P, McDonnell JG, Pollard AM (1999) Lead Isotope Analysis, Oxhide Ingots and the Presentation
of Scientific Data in Archaeology. In: Young S, Pollard AM, Budd
P, Ixer RA (eds) Metals in antiquity: Proceedings
of the International symposium at Harvard University, 10 to 13 September
1997. Archaeopress, Oxford, pp 122–133
Stacey JS, Kramers JD (1975) Approximation of
terrestrial lead isotope evolution by a two-stage model.
Earth and Planetary Science Letters 26:207–221. https://doi.org/10.1016/0012-821X(75)90088-6
Standish C, Dhuime B, Chapman R, et al (2013) Solution and laser ablationMC-ICP-MS lead isotope
analysis of gold. Journal of Analytical Atomic
Spectrometry 28:217–225. https://doi.org/10.1039/C2JA30277B
Stos-Gale ZA, Maliotis G, Gale NH, ANNETTS N (1997) Lead isotope characteristics of the Cyprus copper ore
deposits applied to provenance studies of copper oxhide ingots.
Archaeometry 39:83–123. https://doi.org/10.1111/j.1475-4754.1997.tb00792.x
Taylor RN, Ishizuka O, Michalik A, et al (2015) Evaluating the precision of Pb isotope measurement by
mass spectrometry. Journal of Analytical Atomic
Spectrometry 30:198–213. https://doi.org/10.1039/C4JA00279B
Thirlwall MF (2002) Multicollector ICP-MS analysis
of Pb isotopes using a 207pb-204pb double spike demonstrates up to 400
ppm/amu systematic errors in Tl-normalization. Chemical
Geology 184:255–279. https://doi.org/10.1016/S0009-2541(01)00365-5
White WM, Albarède F, Télouk P (2000) High-precision analysis of Pb isotope ratios by
multi-collector ICP-MS. Chemical Geology
167:257–270. https://doi.org/10.1016/S0009-2541(99)00182-5
Yuan H, Yuan W, Cheng C, et al (2016) Evaluation of
lead isotope compositions of NIST NBS 981 measured by thermal ionization
mass spectrometer and multiple-collector inductively coupled plasma mass
spectrometer. Solid Earth Sciences 1:74–78. https://doi.org/10.1016/j.sesci.2016.04.001