References

Published

May 12, 2024

Albarede F, Blichert-Toft J, Gentelli L, et al (2020) A miner’s perspective on Pb isotope provenances in the Western and Central Mediterranean. Journal of Archaeological Science 121:105194. https://doi.org/10.1016/j.jas.2020.105194
Albarède F, Desaulty A-M, Blichert-Toft J (2012) A geological perspective on the use of Pb isotopes in Archaeometry. Archaeometry 54:853–867. https://doi.org/10.1111/j.1475-4754.2011.00653.x
Albarède F, Juteau M (1984) Unscrambling the lead model ages. Geochimica et Cosmochimica Acta 48:207–212. https://doi.org/10.1016/0016-7037(84)90364-8
Baxter MJ, Beardah CC, Wright RVS (1997) Some Archaeological Applications of Kernel Density Estimates. Journal of Archaeological Science 24:347–354. https://doi.org/10.1006/jasc.1996.0119
Baxter MJ, Gale NH (1998) Testing for multivariate normality via univariate tests: A case study using lead isotope ratio data. Journal of Applied Statistics 25:671–683. https://doi.org/10.1080/02664769822891
Beardah CC, Baxter MJ (1999) Three-Dimensional Data Display Using Kernel Density Estimates. In: Barceló JA, Briz I, Vila A (eds) New Techniques for Old Times. CAA98. Computer Applications and Quantitative Methods in Archaeology. Archaeopress, Oxford, pp 163–170
Bendall Ch (2003) The Application of Trace Element and Isotopic Analyses to the Study of Celtic Gold Coins and their Metal Sources. PhD thesis, Goethe-Universität Frankfurt; Fachbereich Geowissenschaften
Brill RH, Wampler JM (1967) Isotope Studies of Ancient Lead. American Journal of Archaeology 71:63–77. https://doi.org/10.2307/501589
Cannon RS, Pierce AP, Antweiler JC, Buck KL (1961) The data of lead isotope geology related to problems of ore genesis. Economic Geology 56:1–38. https://doi.org/10.2113/gsecongeo.56.1.1
Collerson KD, Kamber BS, Schoenberg R (2002) Applications of accurate, high-precision Pb isotope ratio measurement by multi-collector ICP-MS. Chemical Geology 188:65–83. https://doi.org/10.1016/S0009-2541(02)00059-1
Ellam RM (2010) The graphical presentation of lead isotope data for environmental source apportionment. The Science of the total environment 408:3490–3492. https://doi.org/10.1016/j.scitotenv.2010.03.037
Grögler N, Geiss J, Grünenfelder M, Houtermans FG (1966) Isotopenuntersuchungen zur Bestimmung der Herkunft römischer Bleirohre und Bleibarren. Zeitschrift für Naturforschung A 21:1167–1172. https://doi.org/10.1515/zna-1966-0744
Hsu Y-K, Rawson J, Pollard AM, et al (2018) Application of Kernel Density Estimates to Lead Isotope Compositions of Bronzes from Ningxia, North-West China: Application of KDEs to Lead Isotope Compositions. Archaeometry 60:128–143. https://doi.org/10.1111/arcm.12347
Hsu Y-K, Sabatini BJ (2019) A geochemical characterization of lead ores in China: An isotope database for provenancing archaeological materials. PLoS ONE 14:e0215973. https://doi.org/10.1371/journal.pone.0215973
Jansen M (2019) Geochemie und Archäometallurgie des Goldes der Bronzezeit in Vorderasien [Geochemistry and archaeometallurgy of Bronze Age gold in Middle Asia], in German. PhD thesis, Ruhr-Universität Bochum; Fakultät für Geowissenschaften
Ma Q, Pollard AM, Yu Y, et al (2022) Laser ablation inductively coupled plasma mass spectrometry analysis of potash and m-Na-Al glasses in China- using Kernel methods for trace element analysis. Heritage Science 10:253. https://doi.org/10.1186/s40494-022-00651-3
Milot J, Malod-Dognin C, Blichert-Toft J, et al (2021) Sampling and combined Pb and Ag isotopic analysis of ancient silver coins and ores. Chemical Geology 564:120028. https://doi.org/10.1016/j.chemgeo.2020.120028
Rehkämper M, Mezger K (2000) Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP-MS: Verification and application of optimized analytical protocols. Journal of Analytical Atomic Spectrometry 15:1451–1460. https://doi.org/10.1039/B005262K
Scaife B, Budd P, McDonnell JG, Pollard AM (1999) Lead Isotope Analysis, Oxhide Ingots and the Presentation of Scientific Data in Archaeology. In: Young S, Pollard AM, Budd P, Ixer RA (eds) Metals in antiquity: Proceedings of the International symposium at Harvard University, 10 to 13 September 1997. Archaeopress, Oxford, pp 122–133
Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26:207–221. https://doi.org/10.1016/0012-821X(75)90088-6
Standish C, Dhuime B, Chapman R, et al (2013) Solution and laser ablationMC-ICP-MS lead isotope analysis of gold. Journal of Analytical Atomic Spectrometry 28:217–225. https://doi.org/10.1039/C2JA30277B
Stos-Gale ZA, Maliotis G, Gale NH, ANNETTS N (1997) Lead isotope characteristics of the Cyprus copper ore deposits applied to provenance studies of copper oxhide ingots. Archaeometry 39:83–123. https://doi.org/10.1111/j.1475-4754.1997.tb00792.x
Taylor RN, Ishizuka O, Michalik A, et al (2015) Evaluating the precision of Pb isotope measurement by mass spectrometry. Journal of Analytical Atomic Spectrometry 30:198–213. https://doi.org/10.1039/C4JA00279B
Thirlwall MF (2002) Multicollector ICP-MS analysis of Pb isotopes using a 207pb-204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chemical Geology 184:255–279. https://doi.org/10.1016/S0009-2541(01)00365-5
White WM, Albarède F, Télouk P (2000) High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology 167:257–270. https://doi.org/10.1016/S0009-2541(99)00182-5
Yuan H, Yuan W, Cheng C, et al (2016) Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer. Solid Earth Sciences 1:74–78. https://doi.org/10.1016/j.sesci.2016.04.001